Question

A real valued function $$f\left( x \right)$$  satisfies the functional equation $$f\left( {x - y} \right) = f\left( x \right)f\left( y \right) - f\left( {a - x} \right)f\left( {a + y} \right)$$
where $$a$$ is a given constant and $$f\left( 0 \right) = 1,f\left( {2a - x} \right)$$     is equal to

A. $$ - f\left( x \right)$$  
B. $$f\left( x \right)$$
C. $$f\left( a \right) + f\left( {a - x} \right)$$
D. $$f\left( { - x} \right)$$
Answer :   $$ - f\left( x \right)$$
Solution :
$$\eqalign{ & f\left( {2a - x} \right) = f\left( {a - \left( {x - a} \right)} \right) \cr & = f\left( a \right)f\left( {x - a} \right) - f\left( 0 \right)f\left( x \right) = f\left( a \right)f\left( {x - a} \right) - f\left( x \right) \cr & = - f\left( x \right)\,\left[ {\because x = 0,y = 0,f\left( 0 \right) = {f^2}\left( 0 \right) - {f^2}\left( a \right)} \right. \cr & \left. { \Rightarrow {f^2}\left( a \right) = 0 \Rightarrow f\left( 0 \right) = 0} \right] \cr & \Rightarrow f\left( {2a - x} \right) = - f\left( x \right) \cr} $$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section