Solution :

Let $$OP =$$ Pole,
$$\eqalign{
& \angle PAO = \angle PBO = \angle PCQ = \alpha \cr
& \frac{{OP}}{{OB}} = \tan \alpha \cr
& \Rightarrow \,\,OB = OP\cot \alpha \,\,\,\,\,\,.....\left( 1 \right) \cr} $$
$$\eqalign{
& {\text{Similarly}}\,\,OA = OP\cot \alpha \,\,\,\,\,.....\left( 2 \right) \cr
& {\text{Similarly}}\,\,OC = OP\cot \alpha \,\,\,\,\,.....\left( 3 \right) \cr} $$
From (1), (2) and (3), $$OA = OB = OC$$
⇒ $$O$$ is the point of circumcentre of the triangle $$ABC.$$