Question

A person invites a party of 10 friends at dinner and place them so that 4 are on one round table and 6 on the other round table. The number of ways in which he can arrange the guests is

A. $$\frac{{\left( {10} \right)!}}{{6!}}$$
B. $$\frac{{\left( {10} \right)!}}{{24}}$$  
C. $$\frac{{\left( {9} \right)!}}{{24}}$$
D. None of these
Answer :   $$\frac{{\left( {10} \right)!}}{{24}}$$
Solution :
Selection of 6 guests $$ = {\,^{10}}{C_6}$$
Permutation of 6 on round table $$= 5!$$
Permutation of 4 on round table $$= 3!$$
Then, total number of arrangements $$ = {\,^{10}}{C_5} \cdot 5! \cdot 3!$$
$$ = \frac{{\left( {10} \right)!}}{{6! \cdot 4!}} \cdot 5! \cdot 3! = \frac{{\left( {10} \right)!}}{{24}}.$$

Releted MCQ Question on
Algebra >> Permutation and Combination

Releted Question 1

$$^n{C_{r - 1}} = 36,{\,^n}{C_r} = 84$$     and $$^n{C_{r + 1}} = 126,$$   then $$r$$ is:

A. 1
B. 2
C. 3
D. None of these.
Releted Question 2

Ten different letters of an alphabet are given. Words with five letters are formed from these given letters. Then the number of words which have at least one letter repeated are

A. 69760
B. 30240
C. 99748
D. none of these
Releted Question 3

The value of the expression $$^{47}{C_4} + \sum\limits_{j = 1}^5 {^{52 - j}{C_3}} $$    is equal to

A. $$^{47}{C_5}$$
B. $$^{52}{C_5}$$
C. $$^{52}{C_4}$$
D. none of these
Releted Question 4

Eight chairs are numbered 1 to 8. Two women and three men wish to occupy one chair each. First the women choose the chairs from amongst the chairs marked 1 to 4 ; and then the men select the chairs from amongst the remaining. The number of possible arrangements is

A. $$^6{C_3} \times {\,^4}{C_2}$$
B. $$^4{P_2} \times {\,^4}{C_3}$$
C. $$^4{C_2} + {\,^4}{P_3}$$
D. none of these

Practice More Releted MCQ Question on
Permutation and Combination


Practice More MCQ Question on Maths Section