Question
A particle of unit mass undergoes one-dimensional motion such that its velocity varies according to $$v\left( x \right) = \beta {x^{ - 2n}}$$ where, $$\beta $$ and $$n$$ are constants and $$x$$ is the position of the particle. The acceleration of the particle as a function of $$x,$$ is given by
A.
$$ - 2n{\beta ^2}\,{x^{ - 2n - 1}}$$
B.
$$ - 2n{\beta ^2}\,{x^{ - 4n - 1}}$$
C.
$$ - 2{\beta ^2}\,{x^{ - 2n + 1}}$$
D.
$$ - 2n{\beta ^2}\,{e^{ - 4n + 1}}$$
Answer :
$$ - 2n{\beta ^2}\,{x^{ - 4n - 1}}$$
Solution :
Given, $$v = \beta {x^{ - 2n}}$$
$$\eqalign{
& a = \frac{{dv}}{{dt}} = \frac{{dx}}{{dt}} \cdot \frac{{dv}}{{dx}} \cr
& \Rightarrow a = v\frac{{dv}}{{dx}} = \left( {\beta {x^{ - 2n}}} \right)\left( { - 2n\beta {x^{ - 2n - 1}}} \right) \cr
& \Rightarrow a = - 2n{\beta ^2}{x^{ - 4n - 1}} \cr} $$