Question
A particle moves a distance $$x$$ in time $$t$$ according to equation $$x = {\left( {t + 5} \right)^{ - 1}}.$$ The acceleration of particle is proportional to
A.
$${\left( {{\text{velocity}}} \right)^{\frac{3}{2}}}$$
B.
$${\left( {{\text{distance}}} \right)^2}$$
C.
$${\left( {{\text{distance}}} \right)^{ - 2}}$$
D.
$${\left( {{\text{velocity}}} \right)^{\frac{2}{3}}}$$
Answer :
$${\left( {{\text{velocity}}} \right)^{\frac{3}{2}}}$$
Solution :
$$\eqalign{
& x = \frac{1}{{t + 5}} \cr
& \therefore v = \frac{{dx}}{{dt}} = \frac{{ - 1}}{{{{\left( {t + 5} \right)}^2}}} \cr
& \therefore a = \frac{{{d^2}x}}{{d{t^2}}} = \frac{2}{{{{\left( {t + 5} \right)}^3}}} = 2{x^3} \cr
& {\text{Now}}\,\frac{1}{{\left( {t + 5} \right)}} \propto {v^{\frac{1}{2}}} \cr
& \therefore \frac{1}{{{{\left( {t + 5} \right)}^3}}} \propto {v^{\frac{3}{2}}} \propto a \cr} $$