Question
A particle is moving with a velocity $$\vec v = k\left( {y\hat i + x\hat j} \right)$$ where $$k$$ is a constant. The general equation for its path is:
A.
$$y = {x^2} + {\text{ constant}}$$
B.
$${y^2} = x + {\text{ constant}}$$
C.
$${y^2} = {x^2} + {\text{ constant}}$$
D.
$$xy = {\text{ constant}}$$
Answer :
$${y^2} = {x^2} + {\text{ constant}}$$
Solution :
From given equation,
$$\eqalign{
& \vec v = k\left( {y\hat i + x\hat j} \right) = ky\hat i + kx\hat j = {V_x}\hat i + {V_y}\hat j \cr
& \frac{{dx}}{{dt}} = ky\,\,{\text{and}}\,\,\frac{{dy}}{{dt}} = kx \cr
& {\text{Now}},\,\,\frac{{\frac{{dy}}{{dt}}}}{{\frac{{dx}}{{dt}}}} = \frac{x}{y} = \frac{{dy}}{{dx}}\,\,\, \Rightarrow ydy = xdx \cr} $$
Integrating both sides we get $${y^2} = {x^2} +$$ constant