Question
A particle is moving with a uniform speed in a circular orbit of radius $$R$$ in a central force inversely proportional to the $${n^{th}}$$ power of $$R.$$ If the period of rotation of the particle is $$T,$$ then:
A.
$$T \propto {R^{\frac{3}{2}}}\,{\text{for}}\,{\text{any}}\,n.$$
B.
$$T \propto {R^{\frac{n}{{2 + 1}}}}$$
C.
$$T \propto {R^{\frac{{\left( {n + 1} \right)}}{2}}}$$
D.
$$T \propto {R^{\frac{n}{2}}}$$
Answer :
$$T \propto {R^{\frac{{\left( {n + 1} \right)}}{2}}}$$
Solution :
$$\eqalign{
& m{\omega ^2}R = {\text{Force}}\, \propto \frac{1}{{{R^n}}}\,\,\,\,\,\,\left( {{\text{Force}} = \frac{{m{v^2}}}{R}} \right) \cr
& \Rightarrow {\omega ^2} \propto \frac{1}{{{R^{n + 1}}}} \Rightarrow \omega \, \propto \frac{1}{{{R^{\frac{{n + 1}}{2}}}}} \cr
& {\text{Time period }}T = \frac{{2\pi }}{\omega } \cr
& {\text{Time period, }}T\, \propto \,{R^{\frac{{n + 1}}{2}}} \cr} $$