Question

A line $$PQ$$  meets the parabola $${y^2} = 4ax$$   in $$R$$ such that $$PQ$$  is bisected at $$R$$. If the coordinates of $$P$$ are $$\left( {{x_1},\,{y_1}} \right)$$  then the locus of $$Q$$ is the parabola :

A. $${\left( {y + {y_1}} \right)^2} = 8a\left( {x + {x_1}} \right)$$  
B. $${\left( {y - {y_1}} \right)^2} = 8a\left( {x + {x_1}} \right)$$
C. $${\left( {y + {y_1}} \right)^2} = 8a\left( {x - {x_1}} \right)$$
D. None of these
Answer :   $${\left( {y + {y_1}} \right)^2} = 8a\left( {x + {x_1}} \right)$$
Solution :
Let the coordinates of $$Q$$ be $$\left( {h,\,k} \right).$$  Since the point $$R$$ lies on the parabola. let its coordinates be $$\left( {a{t^2},\,2at} \right).$$
Parabola mcq solution image
Since $$R$$ is mid point of $$PQ,$$
$$\eqalign{ & \therefore \,a{t^2} = \frac{{{x_1} + h}}{2}{\text{ and }}2at = \frac{{{y_1} + k}}{2} \cr & \Rightarrow {t^2} = \frac{{{x_1} + h}}{{2a}}{\text{ and }}t = \frac{{{y_1} + k}}{{4a}} \cr} $$
Equating the two values of $$t,$$ we get
$${\left( {\frac{{{y_1} + k}}{{4a}}} \right)^2} = \frac{{{x_1} + h}}{{2a}}\, \Rightarrow {\left( {{y_1} + k} \right)^2} = 8a\left( {{x_1} + h} \right)$$
Hence, locus of $$Q\left( {h,\,k} \right)$$  is $${\left( {y + {y_1}} \right)^2} = 8a\left( {x + {x_1}} \right)$$

Releted MCQ Question on
Geometry >> Parabola

Releted Question 1

Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$   such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is-

A. $$\left( {\frac{p}{2},\,p} \right){\text{ or }}\left( {\frac{p}{2},\, - p} \right)$$
B. $$\left( {\frac{p}{2},\, - \frac{p}{2}} \right)$$
C. $$\left( { - \frac{p}{2},\,p} \right)$$
D. $$\left( { - \frac{p}{2},\, - \frac{p}{2}} \right)$$
Releted Question 2

The curve described parametrically by $$x = {t^2} + t + 1,\,\,y = {t^2} - t + 1$$      represents-

A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola
Releted Question 3

If $$x+y=k$$   is normal to $${y^2} = 12x,$$   then $$k$$ is-

A. $$3$$
B. $$9$$
C. $$ - 9$$
D. $$ - 3$$
Releted Question 4

If the line $$x-1=0$$   is the directrix of the parabola $${y^2} - kx + 8 = 0,$$    then one of the values of $$k$$ is-

A. $$\frac{1}{8}$$
B. $$8$$
C. $$4$$
D. $$\frac{1}{4}$$

Practice More Releted MCQ Question on
Parabola


Practice More MCQ Question on Maths Section