Question

A line makes the same angle $$\alpha $$ with each of the $$x$$ and $$y$$ axes. If the angle $$\theta $$, which it makes with the $$z$$-axis, is such that $${\sin ^2}\theta = 2\,{\sin ^2}\alpha ,$$    then what is the value of $$\alpha \,?$$

A. $$\frac{\pi }{4}$$  
B. $$\frac{\pi }{6}$$
C. $$\frac{\pi }{3}$$
D. $$\frac{\pi }{2}$$
Answer :   $$\frac{\pi }{4}$$
Solution :
$$\eqalign{ & {\text{Since, }}{l^2} + {m^2} + {n^2} = 1 \cr & \therefore \,{\cos ^2}\alpha + {\cos ^2}\alpha + {\cos ^2}\theta = 1......\left( {\text{i}} \right) \cr} $$
($$\because \,A$$  line makes the same angle $$\alpha $$ with $$x$$ and $$y$$-axes and $$\theta $$ with $$z$$-axis)
$$\eqalign{ & {\text{Also, }}{\sin ^2}\theta = 2\,{\sin ^2}\alpha \cr & \Rightarrow 1 - {\cos ^2}\theta = 2\left( {1 - {{\cos }^2}\alpha } \right)\,\,\,\left( {\because {{\sin }^2}A + {{\sin }^2}A = 1} \right) \cr & \Rightarrow {\cos ^2}\theta = 2\,{\cos ^2}\alpha - 1......\left( {{\text{ii}}} \right) \cr & \therefore \,{\text{From equations }}\left( {\text{i}} \right)\,{\text{and }}\left( {{\text{ii}}} \right), \cr & 2\,{\cos ^2}\alpha + 2{\cos ^2}\alpha - 1 = 1 \cr & \Rightarrow 4\,{\cos ^2}\alpha = 2 \cr & \Rightarrow \cos \,\alpha = \pm \frac{1}{{\sqrt 2 }} \cr & \Rightarrow \alpha = \frac{\pi }{4},\,\frac{{3\pi }}{4} \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section