Question

A line makes $${45^ \circ }$$ with positive $$x$$-axis and makes equal angles with positive $$y,\, z$$  axes, respectively. What is the sum of the three angles which the line makes with positive $$x,\,y$$  and $$z$$ axes ?

A. $${180^ \circ }$$
B. $${165^ \circ }$$  
C. $${150^ \circ }$$
D. $${135^ \circ }$$
Answer :   $${165^ \circ }$$
Solution :
We know that sum of square of direction cosines $$ = 1$$
$$\eqalign{ & {\text{i}}{\text{.e}}{\text{., }}{\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1 \cr & \Rightarrow {\cos ^2}{45^ \circ } + {\cos ^2}\beta + {\cos ^2}\beta = 1 \cr & \left( {{\text{As given }}\alpha = {{45}^ \circ }{\text{ and }}\beta = \gamma } \right) \cr & \Rightarrow \frac{1}{2} + 2{\cos ^2}\beta = 1 \cr & \Rightarrow {\cos ^2}\beta = \frac{1}{4} \cr & \Rightarrow \cos \,\beta = \pm \frac{1}{2}, \cr} $$
Negative value is discarded,
Since the line makes angle with positive axes.
Hence, $$\cos \,\beta = \frac{1}{2} \Rightarrow \cos \,\beta = \cos \,{60^ \circ } \Rightarrow \beta = {60^ \circ }$$
$$\therefore $$  Required sum $$ = \alpha + \beta + \gamma = {45^ \circ } + {60^ \circ } + {60^ \circ } = {165^ \circ }$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section