Question
A large number of bullets are fired in all directions with the same speed $$v.$$ What is the maximum area on the ground on which these bullets will spread?
A.
$$\frac{{\pi {v^2}}}{g}$$
B.
$$\frac{{\pi {v^4}}}{{{g^2}}}$$
C.
$${\pi ^2}\frac{{{v^2}}}{{{g^2}}}$$
D.
$$\frac{{{\pi ^2}{v^4}}}{{{g^2}}}$$
Answer :
$$\frac{{\pi {v^4}}}{{{g^2}}}$$
Solution :
Maximum possible horizontal range $$ = \frac{{{v^2}}}{g}$$
Maximum possible area of the circle $$ = \pi {\left( {\frac{{{v^2}}}{g}} \right)^2} = \frac{{\pi {v^4}}}{{{g^2}}}\,\,\left[ {{\text{Here}}\,r = \frac{{{v^2}}}{g}} \right]$$