Solution :

At time $$t,$$ ball drops $$16{t^2}\,ft$$ distance. Therefore, $$y = 50 - 16{t^2}.....\left( 1 \right)$$
Point $$A$$ is the position of the falling ball at some time $$t.$$ So, $$\frac{{dy}}{{dt}} = - 32t$$
From the figure, $$\tan \,\theta = \frac{y}{x} = \frac{{50}}{{30 + x}}{\text{ or }}y = \left( {\frac{{50}}{{30 + x}}} \right).x$$
$$\eqalign{
& \therefore \,\frac{{dy}}{{dt}} = \frac{d}{{dt}}\left( {\frac{{50}}{{30 + x}}} \right) = \frac{{1500}}{{{{\left( {30 + x} \right)}^2}}}.\frac{{dx}}{{dt}} \cr
& {\text{or }}\frac{{dx}}{{dt}} = \frac{{\left( {30 + {x^2}} \right)}}{{1500}}\left( { - 32t} \right) \cr
& {\text{When }}f = \frac{1}{2},\,y = 46\,\,\,\,\,\,\,\left[ {{\text{using}}\left( 1 \right)} \right] \cr
& {\text{and }}x = 345\,\,\,\,\,\,\,\left[ {{\text{using}}\left( 2 \right)} \right] \cr
& \therefore \,\frac{{dx}}{{dt}} = - 16\frac{{{{\left( {375} \right)}^2}}}{{1500}} = - 1500\,{\text{ft/s}} \cr} $$