Solution :
In solids, Velocity of wave $$V = \sqrt {\frac{Y}{\rho }} = \sqrt {\frac{{9.27 \times {{10}^{10}}}}{{2.7 \times {{10}^3}}}} $$
$$v = 5.85 \times {10^3}m/\sec $$
Since rod is clamped at middle fundamental wave shape
is as follow

$$\eqalign{
& \frac{\lambda }{2} = L \cr
& \Rightarrow \,\,\lambda = 2\,L \cr
& \lambda = 1.2\,m\left( {\because \,\,L = 60\,cm = 0.6\,m\left( {{\text{given}}} \right)} \right) \cr
& {\text{Using, }}v = f\lambda \cr
& \Rightarrow \,\,f = \frac{v}{\lambda } = \frac{{5.85 \times {{10}^3}}}{{1.2}} \cr
& = 4.88 \times {10^3}Hz \cr
& \simeq 5\,kHz \cr} $$