Question

A galvanic cell has electrical potential of $$1.1\,V.$$  If an opposing potential of $$1.1\,V$$  is applied to this cell, what will happen to the cell reaction and current flowing through the cell?

A. The reaction stops and no current flows through the cell.  
B. The reaction continuous but current flows in opposite direction.
C. The concentration of reactants becomes unity and current flows from cathode to anode.
D. The cell does not function as a galvanic cell and zinc is deposited on zinc plate.
Answer :   The reaction stops and no current flows through the cell.
Solution :
If an external potential of $$1.1\,V$$  is applied to the cell, the reaction stops and no current flows through the cell. Any further increase in external potential again starts the reaction but in opposite direction and the cell functions as an electrolytic cell.

Releted MCQ Question on
Physical Chemistry >> Electrochemistry

Releted Question 1

The standard reduction potentials at $$298 K$$  for the following half reactions are given against each
$$\eqalign{ & Z{n^{2 + }}\left( {aq} \right) + 2e \rightleftharpoons Zn\left( s \right)\,\,\,\,\,\,\,\,\, - 0.762 \cr & C{r^{3 + }}\left( {aq} \right) + 2e \rightleftharpoons Cr\left( s \right)\,\,\,\,\,\,\,\,\, - 0.740 \cr & 2{H^ + }\left( {aq} \right) + 2e \rightleftharpoons {H_2}\left( g \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0.000 \cr & F{e^{3 + }}\left( {aq} \right) + 2e \rightleftharpoons F{e^{2 + }}\left( {aq} \right)\,\,\,\,\,\,\,\,0.770 \cr} $$
which is the strongest reducing agent ?

A. $$Zn\left( s \right)$$
B. $$Cr\left( s \right)$$
C. $${H_2}\left( g \right)$$
D. $$F{e^{2 + }}\left( {aq} \right)$$
Releted Question 2

Faraday’s laws of electrolysis are related to the

A. atomic number of the reactants.
B. atomic number of the anion.
C. equivalent weight of the electrolyte.
D. speed of the cation.
Releted Question 3

A solution containing one mole per litre of each $$Cu{\left( {N{O_3}} \right)_2};AgN{O_3};H{g_2}{\left( {N{O_3}} \right)_2};$$       is being electrolysed by using inert electrodes. The values of standard electrode potentials in volts (reduction potentials) are :
$$\eqalign{ & Ag/A{g^ + } = + 0.80,\,\,2Hg/H{g_2}^{ + + } = + 0.79 \cr & Cu/C{u^{ + + }} = + 0.34,\,Mg/M{g^{ + + }} = - 2.37 \cr} $$
With increasing voltage, the sequence of deposition of metals on the cathode will be :

A. $$Ag,Hg,Cu,Mg$$
B. $$Mg,Cu,Hg,Ag$$
C. $$Ag,Hg,Cu$$
D. $$Cu,Hg,Ag$$
Releted Question 4

The electric charge for electrode deposition of one gram equivalent of a substance is :

A. one ampere per second.
B. 96,500 coloumbs per second.
C. one ampere for one hour.
D. charge on one mole of electrons.

Practice More Releted MCQ Question on
Electrochemistry


Practice More MCQ Question on Chemistry Section