Solution :
$$\eqalign{
& {\text{I}}{\text{.F}}{\text{.}} = {e^{ - x}} \cr
& \therefore \,y{e^{ - x}} = \int {{e^{ - x}}} \left( {\cos \,x - \sin \,x} \right)dx \cr
& {\text{Put }} - x = t \cr} $$

$$\eqalign{
& = - \int {{e^t}\left( {\cos \,t + \sin \,t} \right)dt} \cr
& = - {e^t}\sin \,t + c \cr
& y{e^{ - x}} = {e^{ - x}}\sin \,x + c \cr} $$
Since, $$y$$ is bounded when $$x \to \infty \Rightarrow c = 0$$
$$\eqalign{
& \therefore \,y = \sin \,x \cr
& {\text{Area}} = \int_0^{\frac{\pi }{4}} {\left( {\cos \,x - \sin \,x} \right)dx = \sqrt 2 - 1} \cr} $$