Solution :

$$\eqalign{
& \sin \,x\frac{{dy}}{{dx}} + y\,\cos \,x = 1 \cr
& \frac{{dy}}{{dx}} + y\,\cot \,x = {\text{cosec}}\,x \cr
& {\text{I}}{\text{.F}}{\text{.}} = {e^{\int {\cot \,x\,dx} }} = {e^{\ln \left( {\sin \,x} \right)}} = \sin \,x \cr
& y\,\sin \,x = \int {{\text{cosec}}\,x.\sin \,x\,dx = x + C} \cr
& {\text{If }}x = 0,\,y{\text{ is finite}} \cr
& \therefore \,C = 0 \cr
& y = x\left( {{\text{cosec}}\,x} \right) = \frac{x}{{\sin \,x}} \cr
& {\text{Now, }}l < \frac{{{\pi ^2}}}{4}{\text{ and }}l > \frac{\pi }{2} \cr
& {\text{Hence, }}\frac{\pi }{2} < l < \frac{{{\pi ^2}}}{4} \cr} $$