Question

A function $$f:R \to R$$   is defined as $$f\left( x \right) = {x^2}$$   for and for $$x \geqslant 0$$  and $$f\left( x \right) = - x$$   for $$x < 0.$$
Consider the following statements in respect of the above function :
1. The function is continuous at $$x = 0.$$
2. The function is differentiable at $$x = 0.$$
Which of the above statements is/are correct ?

A. 1 only  
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2
Answer :   1 only
Solution :
\[f:R \to R,\,f\left( x \right) = \left\{ \begin{array}{l} \,\,\,{x^2},\,\,\,\,\,x \ge 0\\ - x,\,\,\,\,\,x < 0 \end{array} \right.\]
For continuity at $$x = 0$$
$$\eqalign{ & f\left( {0 - 0} \right) = \mathop {\lim }\limits_{h \to 0} f\left( {0 - h} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{h \to 0} \left[ {\left( {0 - h} \right)} \right] \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{h \to 0} \,h = 0 \cr & f\left( {0 + 0} \right) = \mathop {\lim }\limits_{h \to 0} f\left( {0 + h} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{h \to 0} {\left( {0 + h} \right)^2} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 0 \cr & {\text{and }}f\left( 0 \right) = 0 \cr & f\left( x \right){\text{ is continuous at }}x = 0 \cr & {\text{For differentiability at }}x = 0 \cr & \mathop {\lim }\limits_{h \to 0} \frac{{ - \left( { - h} \right) - 0}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \frac{h}{{ - h}} = - 1 \cr & {\text{and }}\mathop {\lim }\limits_{h \to 0} \frac{{f\left( {0 + h} \right) - f\left( 0 \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \,h = 0 \cr & f\left( x \right){\text{ is not differentiable at }}x = 0 \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section