Question

A function $$f$$ is defined as follows $$f\left( x \right) = {x^p}\cos \left( {\frac{1}{x}} \right),\,x \ne 0\,f\left( 0 \right) = 0$$
What conditions should be imposed on $$p$$ so that $$f$$ may be continuous at $$x = 0\,? $$

A. $$p = 0$$
B. $$p > 0$$  
C. $$p < 0$$
D. No value of $$p$$
Answer :   $$p > 0$$
Solution :
Given function is defined as : \[f\left( x \right) = \left\{ \begin{array}{l} {x^p}\cos \left( {\frac{1}{x}} \right),\,\,\,x \ne 0\\ \,\,\,\,\,\,\,\,\,0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0 \end{array} \right.\]
For continuity :
$$\eqalign{ & {\text{L}}{\text{.H}}{\text{.S}}{\text{.}}:\mathop {\lim }\limits_{x \to 0} f\left( x \right) = {\text{R}}{\text{.H}}{\text{.S}}{\text{.}}\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \cr & \Rightarrow \mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} {x^p}\cos \left( {\frac{1}{x}} \right) = 0 \cr & \Rightarrow \mathop {\lim }\limits_{x \to 0} {x^p}\cos \left( {\frac{1}{x}} \right) = 0 \cr} $$
$$\cos \left( {\frac{1}{x}} \right)$$   is always a finite quantity if $$x \to 0$$
$$ \Rightarrow {x^p} = 0$$
which is possible only if $$p > 0.$$

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section