Question

A force $$F = 2i + j - k$$    acts at a point $$A,$$ whose position vector is $$2i - j.$$   The moment of $$F$$ about the origin is :

A. $$i + 2j - 4k$$
B. $$i - 2j - 4k$$
C. $$i + 2j + 4k$$  
D. $$i - 2j + 4k$$
Answer :   $$i + 2j + 4k$$
Solution :
Force $$\left( {\vec F} \right) = 2i + j - k$$    and its position vector of $$A = 2i - j.$$   We know that the position vector of a force about origin $$\left( r \right) = \left( {2i - j} \right) - \left( {0i + 0j + 0k} \right)$$       or $$r = 2i - j.$$
Therefore, moment of the force about origin
\[ = r \times \overrightarrow F = \left| \begin{array}{l} i\,\,\,\,\,\,\,\,\,j\,\,\,\,\,\,\,\,\,\,\,k\\ 2\,\,\, - 1\,\,\,\,\,\,\,\,0\\ 2\,\,\,\,\,\,\,\,1\,\,\,\, - 1 \end{array} \right| = i + 2j + 4k.\]

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section