Solution :
Let radius of the loop is $$r$$ at any time $$t$$ and in further time $$dt,$$ radius increases by $$dr.$$
The change in flux : $$d\phi = \left( {2\pi rdr} \right)B$$

$$\eqalign{
& \Rightarrow e = \frac{{d\phi }}{{dt}} = 2\pi r\left( {\frac{{dr}}{{dt}}} \right)\frac{k}{r} \cr
& \Rightarrow e = 2\pi ck\left( {{\text{constant}}} \right)\,\,\left[ {\because \frac{{dr}}{{dt}} = c,B = \frac{k}{r}} \right] \cr} $$
The change in flux : $$d\phi = \left( {2\pi rdr} \right)B$$