Question

A curve is such that the portion of the $$x$$-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point $$\left( {1,\,2} \right).$$  The equation of the curve is :

A. $$xy = 1$$
B. $$xy = 2$$  
C. $$xy = 3$$
D. none of these
Answer :   $$xy = 2$$
Solution :
Differential Equations mcq solution image
Let $$P\left( {x,\,y} \right)$$  be any point on the curve, $$PM$$  the perpendicular to $$x$$-axis $$PT$$  the tangent at $$P$$ meeting the axis of $$x$$ at $$T.$$ As given $$OT = 2\,OM =2x.$$    Equation of the tangent at $$P\left( {x,\,y} \right)$$  is $$Y - y = \frac{{dy}}{{dx}}\left( {X - x} \right)$$
It intersects the axis of $$x$$ where $$Y = 0$$
i.e., $$ - y = \frac{{dy}}{{dx}}\left( {X - x} \right){\text{ or }}X = x - y\frac{{dy}}{{dx}} = OT$$
Hence, $$x - y\frac{{dy}}{{dx}} = 2x{\text{ or }}\frac{{dx}}{x} + \frac{{dy}}{y} = 0$$
Integrating, $$\log \,x + \log \,y = \log \,C{\text{ i}}{\text{.e}}{\text{., }}xy = C$$
This passes through $$\left( {1,\,2} \right),$$
$$\therefore \,C = 2$$
Hence the required curve is $$xy = 2$$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section