A current of $$10.0A$$ flows for $$2.00\,h$$ through an electrolytic cell containing a molten salt of metal $$X.$$ This results in the decomposition of $$0.250\,mol$$ of metal $$X$$ at the cathode. The oxidation state of $$X$$ in the molten salt is : $$\left( {F = 96,500\,C} \right)$$
A.
$$+1$$
B.
$$+2$$
C.
$$+3$$
D.
$$+4$$
Answer :
$$+3$$
Solution :
According to Faraday’s first law of electrolysis
$$\eqalign{
& W = \frac{{E \times i \times t}}{{96500}} \cr
& {\text{Where }}E{\text{ = equivalent weight}} \cr
& = \frac{{mol.{\text{ }}mass{\text{ of metal}}(M)}}{{{\text{oxidation state of metal }}(x)}} \cr
& {\text{Substituting the value in the formula}} \cr
& W = \frac{M}{x} \times \frac{{i \times t}}{{96500}} \cr
& {\text{or}}\,\,x = \frac{M}{W} \times \frac{{i \times t}}{{96500}} \cr
& = \frac{{10 \times 2 \times 60 \times 60}}{{96500 \times 0.250}} \cr
& = 3 \cr
& \left[ {{\text{Given : no}}{\text{. of }}moles = \frac{M}{W} = 0.250} \right] \cr
& {\text{Hence oxidation state of metal is}}\left( { + 3} \right) \cr} $$
Releted MCQ Question on Physical Chemistry >> Electrochemistry
Releted Question 1
The standard reduction potentials at $$298 K$$ for the following half reactions are given against each
$$\eqalign{
& Z{n^{2 + }}\left( {aq} \right) + 2e \rightleftharpoons Zn\left( s \right)\,\,\,\,\,\,\,\,\, - 0.762 \cr
& C{r^{3 + }}\left( {aq} \right) + 2e \rightleftharpoons Cr\left( s \right)\,\,\,\,\,\,\,\,\, - 0.740 \cr
& 2{H^ + }\left( {aq} \right) + 2e \rightleftharpoons {H_2}\left( g \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0.000 \cr
& F{e^{3 + }}\left( {aq} \right) + 2e \rightleftharpoons F{e^{2 + }}\left( {aq} \right)\,\,\,\,\,\,\,\,0.770 \cr} $$
which is the strongest reducing agent ?
A solution containing one mole per litre of each $$Cu{\left( {N{O_3}} \right)_2};AgN{O_3};H{g_2}{\left( {N{O_3}} \right)_2};$$ is being electrolysed by using inert electrodes. The values of standard electrode potentials in volts (reduction potentials) are :
$$\eqalign{
& Ag/A{g^ + } = + 0.80,\,\,2Hg/H{g_2}^{ + + } = + 0.79 \cr
& Cu/C{u^{ + + }} = + 0.34,\,Mg/M{g^{ + + }} = - 2.37 \cr} $$
With increasing voltage, the sequence of deposition of metals on the cathode will be :