A current carrying coil is subjected to a uniform magnetic field. The coil will orient so that its plane becomes
A.
inclined at $${45^ \circ }$$ to the magnetic field
B.
inclined at any arbitrary angle to the magnetic field
C.
parallel to the magnetic field
D.
perpendicular to magnetic field
Answer :
parallel to the magnetic field
Solution :
The coil must orient so that its magnetic moment becomes parallel to the field. So that the magnetic force on the coil is zero.
Releted MCQ Question on Electrostatics and Magnetism >> Magnetic Effect of Current
Releted Question 1
A conducting circular loop of radius $$r$$ carries a constant current $$i.$$ It is placed in a uniform magnetic field $${{\vec B}_0}$$ such that $${{\vec B}_0}$$ is perpendicular to the plane of the loop. The magnetic force acting on the loop is
A battery is connected between two points $$A$$ and $$B$$ on the circumference of a uniform conducting ring of radius $$r$$ and resistance $$R.$$ One of the arcs $$AB$$ of the ring subtends an angle $$\theta $$ at the centre. The value of the magnetic induction at the centre due to the current in the ring is
A.
proportional to $$2\left( {{{180}^ \circ } - \theta } \right)$$
A proton, a deuteron and an $$\alpha - $$ particle having the same kinetic energy are moving in circular trajectories in a constant magnetic field. If $${r_p},{r_d},$$ and $${r_\alpha }$$ denote respectively the radii of the trajectories of these particles, then
A circular loop of radius $$R,$$ carrying current $$I,$$ lies in $$x - y$$ plane with its centre at origin. The total magnetic flux through $$x - y$$ plane is