Question
A conducting circular loop is placed in a uniform magnetic field of $$0.04\,T$$ with its plane perpendicular to the magnetic field. The radius of the loop starts shrinking at $$2\,mm/s.$$ The induced emf in the loop when the radius is $$2\,cm$$ is
A.
$$4.8\,\pi \,\mu V$$
B.
$$0.8\,\pi \,\mu V$$
C.
$$1.6\,\pi \,\mu V$$
D.
$$3.2\,\pi \,\mu V$$
Answer :
$$3.2\,\pi \,\mu V$$
Solution :
Induced emf in the loop is given by
$$e = - B.\frac{{dA}}{{dt}}$$ where $$A$$ is the area of the loop.
$$\eqalign{
& e = - B.\frac{d}{{dt}}\left( {\pi {r^2}} \right) = - B\,\pi \,2r\frac{{dr}}{{dt}} \cr
& r = 2\,cm = 2 \times {10^{ - 2}}m \cr
& dr = 2\,mm = 2 \times {10^{ - 3}}m,dt = 1s \cr
& e = - 0.04 \times 3.14 \times 2 \times 2 \times {10^{ - 2}} \times \frac{{2 \times {{10}^{ - 3}}}}{1}V \cr
& = 0.32\,\pi \times {10^{ - 5}}V \cr
& = 3.2\,\pi \times {10^{ - 6}}V \cr
& = 3.2\,\pi \,\mu V \cr} $$