Question

A complex number $$z$$ is said to be unimodular if $$\left| z \right| = 1.$$  Suppose $${z_1}\,{\text{and }}{z_2}$$  are complex numbers such that $$\frac{{{z_1} - 2{z_2}}}{{2 - {z_1}{{\overline z }_2}}}$$  is unimodular and $${{z_2}}$$ is not unimodular. Then the point $${{z_2}}$$ lies on a:

A. circle of radius 2.  
B. circle of radius $$\sqrt 2. $$
C. straight line parallel to $$x$$ - axis.
D. straight line parallel to $$y$$ - axis.
Answer :   circle of radius 2.
Solution :
$$\eqalign{ & \left| {\frac{{{z_1} - 2{z_2}}}{{2 - {z_1}{{\overline z }_2}}}} \right| = 1 \cr & \Rightarrow \,{\left| {{z_1} - 2{z_2}} \right|^2} = {\left| {2 - {z_1}{{\overline z }_2}} \right|^2} \cr & \Rightarrow \,\left( {{z_1} - 2{z_2}} \right)\left( {\overline {{z_1} - 2{z_2}} } \right) = \left( {2 - {z_1}{{\overline z }_2}} \right)\left( {\overline {2 - {z_1}{{\overline z }_2}} } \right) \cr & \Rightarrow \,\left( {{z_1} - 2{z_2}} \right)\left( {{{\overline z }_1} - 2{{\overline z }_2}} \right) = \left( {2 - {z_1}{{\overline z }_2}} \right)\left( {2 - {{\overline z }_1}{z_2}} \right) \cr & \Rightarrow \left( {{z_1}{{\overline z }_1}} \right) - 2{z_1}{\overline z _2} - 2{\overline z _1}{z_2} + 4{z_2}{\overline z _2} = \,4 - 2{\overline z _1}{z_2} - 2{z_1}{\overline z _2} + {z_1}{\overline z _1}{z_2}{\overline z _2} \cr & \Rightarrow \,{\left| {{z_1}} \right|^2} + 4{\left| {{z_2}} \right|^2} = 4 + {\left| {{z_1}} \right|^2}{\left| {{z_2}} \right|^2} \cr & \Rightarrow \,{\left| {{z_1}} \right|^2} + 4{\left| {{z_2}} \right|^2} - 4 - {\left| {{z_1}} \right|^2}{\left| {{z_2}} \right|^2} = 0 \cr & \left( {{{\left| {{z_1}} \right|}^2} - 4} \right)\left( {1 - {{\left| {{z_2}} \right|}^2}} \right) = 0 \cr & \because \,\left| {{z_2}} \right| \ne 1 \cr & \therefore \,{\left| {{z_1}} \right|^2} = 4 \cr & \Rightarrow \,\left| {{z_1}} \right| = 2 \cr} $$
⇒ Point $${{z_1}}$$ lies on circle of radius 2.

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section