Question
A Carnot engine takes $$3 \times {10^6}{{\,cal}}{\text{.}}$$ of heat from a reservoir at $${27^ \circ }C,$$ and gives it to a sink at $${27^ \circ }C.$$ The work done by the engine is
A.
$$4.2 \times {10^6}\,J$$
B.
$$8.4 \times {10^6}\,J$$
C.
$$16.8 \times {10^6}\,J$$
D.
zero
Answer :
$$8.4 \times {10^6}\,J$$
Solution :
$$\eqalign{
& \eta = 1 - \frac{{{T_2}}}{{{T_1}}} \cr
& = 1 - \frac{{\left( {273 + 27} \right)}}{{\left( {273 + 627} \right)}} \cr
& = 1 - \frac{{300}}{{900}} \cr
& = 1 - \frac{1}{3} \cr
& = \frac{2}{3} \cr
& {\text{But }}\eta = \frac{W}{Q} \cr
& \therefore \,\,\frac{W}{Q} = \frac{2}{3} \cr
& \Rightarrow \,\,W = \frac{2}{3} \times Q \cr
& = \frac{2}{3} \times 3 \times {10^6} \cr
& = 2 \times {10^6}\,{{cal}}{\text{.}} \cr
& {\text{ = }}2 \times {10^6} \times 4.2\,J \cr
& = 8.4 \times {10^6}\,J \cr} $$