Question
A car, moving with a speed of $$50 \,km/hr,$$ can be stopped by brakes after at least $$6 \,m.$$ If the same car is moving at a speed of $$100 \,km/hr,$$ the minimum stopping distance is-
A.
$$12 \,m$$
B.
$$18 \,m$$
C.
$$24 \,m$$
D.
$$6 \,m$$
Answer :
$$24 \,m$$
Solution :
$$\eqalign{
& {\bf{Case - 1:}} \cr
& u = 50 \times \frac{5}{{18}}\,m/s, \cr
& v = 0,\,\,\,\,s = 6\,m,\,\,\,\,a = a \cr
& {v^2} - {u^2} = 2as \cr
& \Rightarrow {0^2} - {\left( {50 \times \frac{5}{{18}}} \right)^2} = 2 \times a \times 6 \cr
& \Rightarrow - {\left( {50 \times \frac{5}{{18}}} \right)^2} = 2 \times a \times 6.....(i) \cr
& {\bf{Case - 2:}} \cr
& u = 100 \times \frac{5}{{18}}\,m/s, \cr
& v = 0,\,\,\,\,s = s,\,\,\,\,a = a \cr
& \therefore {v^2} - {u^2} = 2as \cr
& \Rightarrow {0^2} - {\left( {100 \times \frac{5}{{18}}} \right)^2} = 2 \times a \times s \cr
& \Rightarrow - {\left( {100 \times \frac{5}{{18}}} \right)^2} = 2 \times a \times s.....(ii) \cr
& {\text{Dividing (i) and (ii) we get}} \cr
& \frac{{100 \times 100}}{{50 \times 50}}{\text{ = }}\frac{{2 \times a \times s}}{{2 \times a \times 6}} \cr
& \Rightarrow s = 24\,m \cr} $$