Solution :
Let $$x$$ be the total distance between points $$P$$ and $$Q$$ and $$v$$ be the velocity of car while passing a certain middle point of $$PQ.$$ If $$a$$ is the acceleration of the car, then

For part $$PQ,$$
$$\eqalign{
& {40^2} - {30^2} = 2ax \cr
& {\text{or}}\,a = \frac{{350}}{x}\,......\left( {\text{i}} \right) \cr} $$
For part $$RQ,$$
$${40^2} - {v^2} = \frac{{2ax}}{2}\,......\left( {{\text{ii}}} \right)$$
Putting value of a from Eq. (i) in Eq. (ii), we have
$$\eqalign{
& {40^2} - {v^2} = 2\left( {\frac{{350}}{x}} \right)\frac{x}{2} \cr
& {\text{or}}\,\,{40^2} - {v^2} = 350\quad \cr
& {\text{or}}\,\,{v^2} = 1250 \cr
& \Rightarrow v = 25\sqrt 2 \,km/h \cr} $$