Question
A body of mass $$10\,kg$$ is attached to a wire of radius $$3\,cm.$$ It’s breaking stress is $$4.8 \times {10^7}\,N{m^{ - 2}},$$ the area of cross-section of the wire is $${10^{ - 6}}{m^2}.$$ What is the maximum angular velocity with which it can be rotated in the horizontal circle?
A.
$$1\,rad\,{\sec ^{ - 1}}$$
B.
$$2\,rad\,{\sec ^{ - 1}}$$
C.
$$4\,rad\,{\sec ^{ - 1}}$$
D.
$$8\,rad\,{\sec ^{ - 1}}$$
Answer :
$$4\,rad\,{\sec ^{ - 1}}$$
Solution :
Given that $$\frac{F}{A} = 4.8 \times {10^7}N{m^{ - 2}}$$
$$\eqalign{
& \therefore F = 4.8 \times {10^7} \times A \cr
& {\text{or}}\,\,\frac{{m{v^2}}}{r} = 4.8 \times {10^7} \times {10^{ - 6}} = 48 \cr
& {\text{or}}\,\frac{{m{r^2}{\omega ^2}}}{r} = 48\,\,{\text{or}}\,\,{\omega ^2} = \frac{{48}}{{mr}} \cr
& \omega = \sqrt {\left( {\frac{{48}}{{10 \times 0.3}}} \right)} = \sqrt {16} = 4\,rad/\sec \cr} $$