Solution :
Since, initial and final points are same
So, $$\Delta {U_{A \to B \to C}} = \Delta {U_{A \to C}}\,......\left( {\text{i}} \right)$$
Also $$A \to B$$ is isochoric process
So $$d{W_{A \to B}} = 0$$
and $$dQ = dU + dW$$
So, $$d{Q_{A \to B}} = d{U_{A \to B}} = 400\,J$$

Next $$B \to C$$ is isobaric process
$$\eqalign{
& {\text{So,}}\,\,\,d{Q_{B \to C}} = d{U_{B \to C}} + d{W_{B \to C}} \cr
& = d{U_{B \to C}} + p\Delta {V_{B \to C}} \cr
& \Rightarrow 100 = d{U_{B \to C}} + 6 \times {10^4}\left( {2 \times {{10}^{ - 3}}} \right) \cr
& \Rightarrow d{U_{B \to C}} = 100 - 120 = - 20\,J \cr} $$
From Eq. (i),
$$\eqalign{
& \because \Delta {U_{A \to B \to C}} = \Delta {U_{A \to C}} \cr
& \Rightarrow \Delta {U_{A \to B}} + \Delta {U_{B \to C}} = d{Q_{A \to C}} - d{W_{A \to C}} \cr
& \Rightarrow 400 + ( - 20) = d{Q_{A \to C}} - \left( {p\Delta {V_A} + } \right.{\text{Area}}\,{\text{of}}\left. {\Delta ABC} \right) \cr
& \Rightarrow d{Q_{A \to C}} = 380 + \left( {2 \times {{10}^4} \times 2 \times {{10}^{ - 3}} + \frac{1}{2} \times 2 \times {{10}^{ - 3}} \times 4 \times {{10}^4}} \right) \cr
& = 380 + \left( {40 + 40} \right) \cr
& d{Q_{A \to C}} = 460\,J \cr} $$