Question

$$\frac{1}{{1!\, \cdot \left( {n - 1} \right)!}} + \frac{1}{{3!\, \cdot \left( {n - 3} \right)!}} + \frac{1}{{5!\, \cdot \left( {n - 5} \right)!}} + .....$$          is equal to

A. $$\frac{{{2^{n - 1}}}}{{n!}}$$  for even values of $$n$$ only
B. $$\frac{{{2^{n - 1}} + 1}}{{n!}} - 1$$   for odd values of $$n$$ only
C. $$\frac{{{2^{n - 1}}}}{{n!}}$$  for all $$n \in N$$  
D. None of these
Answer :   $$\frac{{{2^{n - 1}}}}{{n!}}$$  for all $$n \in N$$
Solution :
Expression $$ = \frac{1}{{n!}}\left\{ {^n{C_1} + {\,^n}{C_3} + {\,^n}{C_5} + .....} \right\} = \frac{1}{{n!}} \cdot {2^{n - 1}}\,{\text{for all }}n \in N.$$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section