Question
$$\int {\frac{{\left( {1 + x} \right)}}{{x{{\left( {1 + x{e^x}} \right)}^2}}}dx} {\text{ is }} = ?$$
A.
$$\ln \left| {\frac{{x{e^x}}}{{1 + x{e^x}}}} \right| + \frac{1}{{1 + x{e^x}}} + C$$
B.
$$\left( {1 + x{e^x}} \right) + \ln \left| {\frac{{x{e^x}}}{{1 + x{e^x}}}} \right| + C$$
C.
$$\frac{1}{{1 + x{e^x}}} + \ln \left| {x{e^x}\left( {1 + x{e^x}} \right)} \right| + C$$
D.
none of these
Answer :
$$\ln \left| {\frac{{x{e^x}}}{{1 + x{e^x}}}} \right| + \frac{1}{{1 + x{e^x}}} + C$$
Solution :
$$\eqalign{
& I = \int {\frac{{\left( {1 + x} \right)}}{{x{{\left( {1 + x{e^x}} \right)}^2}}}dx} \cr
& \,\,\,\,\, = \int {\frac{{\left( {1 + x} \right){e^x}}}{{x{e^x}{{\left( {1 + x{e^x}} \right)}^2}}}dx} \cr
& {\text{Put }}x{e^x} = t \Rightarrow \left( {{e^x} + x{e^x}} \right)dx = dt \cr
& I = \int {\frac{{dt}}{{t{{\left( {1 + t} \right)}^2}}}} \cr
& {\text{Let }}\frac{1}{{t{{\left( {1 + t} \right)}^2}}} = \frac{A}{t} + \frac{B}{{1 + t}} + \frac{D}{{{\left( {1 + t} \right)}^2}},{\text{ we get}} \cr
& A = \frac{1}{{{{\left( {1 + 0} \right)}^2}}} = 1,\,\,D = \frac{1}{{ - 1}} = - 1 \cr
& {\text{Equating coefficient of }}{t^2},\,\,\,0 = A + B \Rightarrow B = - 1 \cr
& \therefore \,I = \int {\left[ {\frac{1}{t} - \frac{1}{{1 + t}} - \frac{1}{{{{\left( {1 + t} \right)}^2}}}} \right]} dt \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\, = \ln \left| t \right| - \ln \left| {1 + t} \right| + \frac{1}{{1 + t}} + C \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\, = \ln \left| {\frac{t}{{1 + t}}} \right| + \frac{1}{{1 + t}} + C \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\, = \ln \left| {\frac{{x{e^x}}}{{1 + x{e^x}}}} \right| + \frac{1}{{1 + x{e^x}}} + C \cr} $$