Question

$$\int_0^{2\pi } {\frac{{x{{\sin }^{2n}}x}}{{{{\sin }^{2n}}x + {{\cos }^{2n}}x}}dx,\,n > 0} $$       is equal to :

A. $$\pi $$
B. $$2\pi $$
C. $${\pi ^2}$$  
D. $$\frac{1}{2}{\pi ^2}$$
Answer :   $${\pi ^2}$$
Solution :
$$\eqalign{ & I = \int_0^{2\pi } {\frac{{\left( {2\pi - x} \right){{\sin }^{2n}}\left( {2\pi - x} \right)}}{{{{\sin }^{2n}}\left( {2\pi - x} \right) + {{\cos }^{2n}}\left( {2\pi - x} \right)}}dx} \cr & \,\,\,\,\, = 2\pi \int_0^{2\pi } {\frac{{{{\sin }^{2n}}x}}{{{{\sin }^{2n}}x + {{\cos }^{2n}}x}}dx - I} \cr & \therefore 2I = 2\pi \int_0^{2\pi } {\frac{{{{\sin }^{2n}}x}}{{{{\sin }^{2n}}x + {{\cos }^{2n}}x}}dx} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2\pi .2\int_0^\pi {\frac{{{{\sin }^{2n}}x}}{{{{\sin }^{2n}}x + {{\cos }^{2n}}x}}dx} \cr} $$
( because the integrand is a periodic function of period $$\pi .$$ )
$$\eqalign{ & I = 2\pi \int_{\frac{\pi }{2}}^{ - \frac{\pi }{2}} {\frac{{{{\sin }^{2n}}\left( {\frac{\pi }{2} - z} \right)}}{{{{\sin }^{2n}}\left( {\frac{\pi }{2} - z} \right) + {{\cos }^{2n}}\left( {\frac{\pi }{2} - z} \right)}}} d\left( {\frac{\pi }{2} - z} \right) \cr & \,\,\,\,\, = 2\pi \int_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{{{\cos }^{2n}}z}}{{{{\cos }^{2n}}z + {{\sin }^{2n}}z}}} dz \cr & \,\,\,\,\, = 4\pi \int_0^{\frac{\pi }{2}} {\frac{{{{\cos }^{2n}}z}}{{{{\cos }^{2n}}z + {{\sin }^{2n}}z}}dz} \cr & \therefore I = 4\pi I',\,{\text{where}}\,I' = \int_0^{\frac{\pi }{2}} {\frac{{{{\cos }^{2n}}z}}{{{{\cos }^{2n}}z + {{\sin }^{2n}}z}}dz} . \cr & \therefore I' = \int_0^{\frac{\pi }{2}} {\frac{{{{\cos }^{2n}}\left( {\frac{\pi }{2} - z} \right)}}{{{{\cos }^{2n}}\left( {\frac{\pi }{2} - z} \right) + {{\sin }^{2n}}\left( {\frac{\pi }{2} - z} \right)}}} dz \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \int_0^{\frac{\pi }{2}} {\frac{{{{\sin }^{2n}}z}}{{{{\sin }^{2n}}z + {{\cos }^{2n}}z}}} dz \cr & \therefore I' + I' = \int_0^{\frac{\pi }{2}} {dz} = \frac{\pi }{2}\,\,\,\,\,\therefore I' = \frac{\pi }{4} \cr & \therefore I = 4\pi I'\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow I = {\pi ^2} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section