Question

$$\int_0^1 {\left[ {f\left( x \right)g''\left( x \right) - f''\left( x \right)g\left( x \right)} \right]} dx$$       is equal to :
[Given $$f\left( 0 \right) = g\left( 0 \right) = 0$$   ]

A. $$f\left( 1 \right)g\left( 1 \right) - f\left( 1 \right)g'\left( 1 \right)$$
B. $$f\left( 1 \right)g'\left( 1 \right) + f'\left( 1 \right)g\left( 1 \right)$$
C. $$f\left( 1 \right)g'\left( 1 \right) - f'\left( 1 \right)g\left( 1 \right)$$  
D. none of these
Answer :   $$f\left( 1 \right)g'\left( 1 \right) - f'\left( 1 \right)g\left( 1 \right)$$
Solution :
Integrating by parts.
$$\eqalign{ & \int {f\left( x \right)g''\left( x \right)dx - \int {f''\left( x \right)g\left( x \right)} } dx \cr & = f\left( x \right)g'\left( x \right) - \int {f'\left( x \right)g'\left( x \right)dx - f'\left( x \right)g\left( x \right) + } \int {f'\left( x \right)g'\left( x \right)dx} \cr & = f\left( x \right)g'\left( x \right) - f'\left( x \right)g\left( x \right) \cr} $$
Hence, $$\int_0^1 {\left[ {f\left( x \right)g''\left( x \right) - f''\left( x \right)g\left( x \right)} \right]} dx$$
$$\eqalign{ & = f\left( 1 \right)g'\left( 1 \right) - f'\left( 1 \right)g\left( 1 \right) - f\left( 0 \right)g'\left( 0 \right) + f'\left( 0 \right)g\left( 0 \right) \cr & = f\left( 1 \right)g'\left( 1 \right) - f'\left( 1 \right)g\left( 1 \right) \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section