Question

Using mathematical induction, the numbers $${a_n} 's$$ are defined $${a_0} = 1,{a_{n + 1}} = 3{n^2} + n + {a_n},\left( {n \geqslant 0} \right).$$       Then, $$a_n$$ is equal to

A. $${n^3} + {n^2} + 1$$
B. $${n^3} - {n^2} + 1$$  
C. $${n^3} - {n^2} $$
D. $${n^3} + {n^2}$$
Answer :   $${n^3} - {n^2} + 1$$
Solution :
$$\eqalign{ & {\text{Given, }}{a_0} = 1,{a_{n + 1}} = 3{n^2} + n + {a_n} \cr & \Rightarrow {a_1} = 3\left( 0 \right) + 0 + {a_0} = 1 \cr & \Rightarrow {a_2} = 3{\left( 1 \right)^2} + 1 + {a_1} = 3 + 1 + 1 = 5 \cr & {\text{From option }}\left( B \right), \cr & {\text{Let, }}P\left( n \right) = {n^3} - {n^2} + 1 \cr & \therefore P\left( 0 \right) = 0 - 0 + 1 = 1 = {a_0} \cr & P\left( 1 \right) = {1^3} - {1^2} + 1 = 1 = {a_1} \cr & {\text{and }}P\left( 2 \right) = {\left( 2 \right)^3} - {\left( 2 \right)^2} + 1 = 5 = {a_2} \cr & \therefore {a_n} = {n^3} - {n^2} + 1 \cr} $$

Releted MCQ Question on
Algebra >> Mathematical Induction

Releted Question 1

If $${a_n} = \sqrt {7 + \sqrt {7 + \sqrt {7 + ......} } } $$       having $$n$$ radical signs then by methods of mathematical induction which is true

A. $${a_n} > 7\,\,\forall \,\,n \geqslant 1$$
B. $${a_n} < 7\,\,\forall \,\,n \geqslant 1$$
C. $${a_n} < 4\,\,\forall \,\,n \geqslant 1$$
D. $${a_n} < 3\,\,\forall \,\,n \geqslant 1$$
Releted Question 2

Let $$S\left( k \right) = 1 + 3 + 5 + ...... + \left( {2k - 1} \right) = 3 + {k^2}.$$          Then which of the following is true

A. Principle of mathematical induction can be used to prove the formula
B. $$S\left( k \right) \Rightarrow S\left( {k + 1} \right)$$
C. $$S\left( k \right) ⇏ S\left( {k + 1} \right)$$
D. $$S(1)$$  is correct
Releted Question 3

If \[A = \left[ {\begin{array}{*{20}{c}} 1&0\\ 1&1 \end{array}} \right]{\rm{and }}\,\,I = \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right],\]      then which one of the following holds for all $$n \geqslant 1,$$  by the principle of mathematical induction

A. $${A^n} = nA - \left( {n - 1} \right)I$$
B. $${A^n} = {2^{n - 1}}A - \left( {n - 1} \right)I$$
C. $${A^n} = nA + \left( {n - 1} \right)I$$
D. $${A^n} = {2^{n - 1}}A + \left( {n - 1} \right)I$$
Releted Question 4

The inequality $$n! > 2^{n - 1}$$   is true for

A. $$n > 2$$
B. $$n \in N$$
C. $$n > 3$$
D. None of these

Practice More Releted MCQ Question on
Mathematical Induction


Practice More MCQ Question on Maths Section