Question

The middle point of the segment of the straight line joining the points $$\left( {p,\,q} \right)$$  and $$\left( {q,\, - p} \right)$$  is $$\left( {\frac{r}{2},\,\frac{s}{2}} \right).$$   What is the length of the segment ?

A. $$\frac{{\left[ {{{\left( {{s^2} + {r^2}} \right)}^{\frac{1}{2}}}} \right]}}{2}$$
B. $$\frac{{\left[ {{{\left( {{s^2} + {r^2}} \right)}^{\frac{1}{2}}}} \right]}}{4}$$
C. $${\left( {{s^2} + {r^2}} \right)^{\frac{1}{2}}}$$  
D. $$s + r$$
Answer :   $${\left( {{s^2} + {r^2}} \right)^{\frac{1}{2}}}$$
Solution :
Two joining points are $$\left( {p,\,q} \right)$$  and $$\left( {q,\, - p} \right)$$
Mid point of $$\left( {p,\,q} \right)$$  and $$\left( {q,\, - p} \right)$$  is $$\left( {\frac{{p + q}}{2},\,\frac{{q - p}}{2}} \right)$$
But it is given that the mid-point is $$\left( {\frac{r}{2},\,\frac{s}{2}} \right).$$
$$\eqalign{ & \therefore \,\frac{{p + q}}{2} = \frac{r}{2}{\text{ and }}\frac{{q - p}}{2} = \frac{s}{2} \cr & \Rightarrow p + q = r{\text{ and }}q - p = s \cr} $$
Now, length of segment
$$\eqalign{ & = \sqrt {{{\left( {p - q} \right)}^2} + {{\left( {q + p} \right)}^2}} \,\,\,\,\,\left( {{\text{by distance formula}}} \right) \cr & = \sqrt {{s^2} + {r^2}} \cr} $$

Releted MCQ Question on
Geometry >> Straight Lines

Releted Question 1

The points $$\left( { - a, - b} \right),\left( {0,\,0} \right),\left( {a,\,b} \right)$$     and $$\left( {{a^2},\,ab} \right)$$  are :

A. Collinear
B. Vertices of a parallelogram
C. Vertices of a rectangle
D. None of these
Releted Question 2

The point (4, 1) undergoes the following three transformations successively.
(i) Reflection about the line $$y =x.$$
(ii) Translation through a distance 2 units along the positive direction of $$x$$-axis.
(iii) Rotation through an angle $$\frac{p}{4}$$ about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates.

A. $$\left( {\frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
B. $$\left( { - \sqrt 2 ,\,7\sqrt 2 } \right)$$
C. $$\left( { - \frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
D. $$\left( {\sqrt 2 ,\,7\sqrt 2 } \right)$$
Releted Question 3

The straight lines $$x + y= 0, \,3x + y-4=0,\,x+ 3y-4=0$$         form a triangle which is-

A. isosceles
B. equilateral
C. right angled
D. none of these
Releted Question 4

If $$P = \left( {1,\,0} \right),\,Q = \left( { - 1,\,0} \right)$$     and $$R = \left( {2,\,0} \right)$$  are three given points, then locus of the point $$S$$ satisfying the relation $$S{Q^2} + S{R^2} = 2S{P^2},$$    is-

A. a straight line parallel to $$x$$-axis
B. a circle passing through the origin
C. a circle with the centre at the origin
D. a straight line parallel to $$y$$-axis

Practice More Releted MCQ Question on
Straight Lines


Practice More MCQ Question on Maths Section