101. The points $$\left( { - 1,\,1} \right)$$  and $$\left( {1,\, - 1} \right)$$  are symmetrical about the line :

A $$x+y=0$$
B $$y=x$$
C $$x+y=1$$
D none of these
Answer :   $$y=x$$
Discuss Question

102. If the pair of straight lines $${x^2} - 2pxy - {y^2} = 0$$     and $${x^2} - 2qxy - {y^2} = 0$$     be such that each pair bisects the angle between the other pair, then-

A $$pq=-1$$
B $$p=q$$
C $$p=-q$$
D $$pq=1$$
Answer :   $$pq=-1$$
Discuss Question

103. The equation $${x^3} + {y^3} = 0$$   represents :

A three real straight lines
B three points
C the combined equation of a straight line and a circle
D none of these
Answer :   none of these
Discuss Question

104. The straight lines $$x + y= 0, \,3x + y-4=0,\,x+ 3y-4=0$$         form a triangle which is-

A isosceles
B equilateral
C right angled
D none of these
Answer :   isosceles
Discuss Question

105. A variable line $$'L'$$ is drawn through $$O\left( {0,\,0} \right)$$   to meet the lines $${L_1}:y - x - 10 = 0$$    and $${L_2}:y - x - 20 = 0$$    at the points $$A$$ and $$B$$ respectively. A point $$P$$ is taken on $$'L'$$ such that $$\frac{2}{{OP}} = \frac{1}{{OA}} + \frac{1}{{OB}}.$$     Locus of $$'P'$$ is :

A $$3x + 3y = 40$$
B $$3x + 3y + 40 = 0$$
C $$3x - 3y = 40$$
D $$3y - 3x = 40$$
Answer :   $$3y - 3x = 40$$
Discuss Question

106. The point $$A\left( {2,\,1} \right)$$   is translated parallel to the line $$x - y = 3$$   by a distance of $$4$$ units. If the new position $$A'$$ is in the third quadrant, then the coordinates of $$A'$$ are :

A $$\left( {2 + 2\sqrt 2 ,\,1 + 2\sqrt 2 } \right)$$
B $$\left( { - 2 + \sqrt 2 ,\, - 1 - 2\sqrt 2 } \right)$$
C $$\left( {2 - 2\sqrt 2 ,\,1 - 2\sqrt 2 } \right)$$
D none of these
Answer :   $$\left( {2 - 2\sqrt 2 ,\,1 - 2\sqrt 2 } \right)$$
Discuss Question

107. Two sides of a rhombus are along the lines, $$x-y+1 =0$$    and $$7x-y-5=0.$$    If its diagonals intersect at $$\left( { - 1,\, - 2} \right)$$   then which one of the following is a vertex of this rhombus?

A $$\left( {\frac{1}{3}, - \frac{8}{3}} \right)$$
B $$\left( { - \frac{{10}}{3}, - \frac{7}{3}} \right)$$
C $$\left( { - 3,\, - 9} \right)$$
D $$\left( { - 3,\, - 8} \right)$$
Answer :   $$\left( {\frac{1}{3}, - \frac{8}{3}} \right)$$
Discuss Question

108. Let $$O\left( {0,\,0} \right),\,P\left( {3,\,4} \right),\,Q\left( {6,\,0} \right)$$     be the vertices of the triangles $$OPQ.$$   The point $$R$$ inside the triangle $$OPQ$$  is such that the triangles $$OPR, \,PQR, \,OQR$$     are of equal area. The coordinates of $$R$$ are-

A $$\left( {\frac{4}{3},\,3} \right)$$
B $$\left( {3,\,\frac{2}{3}} \right)$$
C $$\left( {3,\,\frac{4}{3}} \right)$$
D $$\left( {\frac{4}{3},\,\frac{2}{3}} \right)$$
Answer :   $$\left( {3,\,\frac{4}{3}} \right)$$
Discuss Question

109. If the line segment joining the points $$A\left( {a,\,b} \right)$$   and $$B\left( {c,\,d} \right)$$   subtends an angle $$\theta $$ at the origin, then $$\cos \,\theta = ?$$

A $$\frac{{ac + bd}}{{\sqrt {\left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right)} }}$$
B $$\frac{{ab + cd}}{{\sqrt {\left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right)} }}$$
C $$\frac{{ad + bc}}{{\sqrt {\left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right)} }}$$
D none of these
Answer :   $$\frac{{ac + bd}}{{\sqrt {\left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right)} }}$$
Discuss Question

110. A straight line through the origin $$O$$ meets the parallel lines $$4x + 2y =9$$    and $$2x+ y+ 6 = 0$$    at points $$P$$ and $$Q$$ respectively. Then the point $$O$$ divides the segment $$PQ$$  in the ratio-

A 1 : 2
B 3 : 4
C 2 : 1
D 4 : 3
Answer :   3 : 4
Discuss Question


Practice More MCQ Question on Maths Section