Question

If the roots of the equation $$b{x^2} + cx + a = 0$$    be imaginary, then for all real values of $$x,$$ the expression $$3{b^2}{x^2} + 6bcx + 2{c^2}$$    is

A. less than $$4ab$$
B. greater than $$- 4ab$$  
C. less than $$- 4ab$$
D. greater than $$4ab$$
Answer :   greater than $$- 4ab$$
Solution :
Given that roots of the equation
$$\eqalign{ & b{x^2} + cx + a = 0\,{\text{are}}\,{\text{imaginary}} \cr & \therefore \,\,\,\,\,{c^2} - 4ab < 0\,\,\,\,.....\left( {\text{i}} \right) \cr & {\text{Let}}\,y = 3{b^2}{x^2} + 6bcx + 2{c^2} \cr & \Rightarrow \,\,3{b^2}{x^2} + 6bcx + 2{c^2} - y = 0 \cr & {\text{As}}\,x\,{\text{is}}\,{\text{real}},D \geqslant 0 \cr & \Rightarrow \,\,\,36{b^2}{c^2} - 12{b^2}\left( {2{c^2} - y} \right) \geqslant 0 \cr & \Rightarrow \,\,\,12{b^2}\left( {3{c^2} - 2{c^2} + y} \right) \geqslant 0 \cr & \Rightarrow \,\,\,{c^2} + y \geqslant 0 \cr & \Rightarrow \,\,y \geqslant - {c^2} \cr & {\text{But}}\,{\text{from}}\,{\text{eqn}}{\text{.}}\,\left( {\text{i}} \right),\,{c^2} < 4ab\,\,{\text{or}}\,\, - {c^2} > - 4ab \cr & \therefore \,\,\,{\text{we}}\,{\text{get}}\,y \geqslant - {c^2} > - 4ab \cr & \Rightarrow \,\,y > - 4ab \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section