Question

If $$P\left( {1 + \frac{t}{{\sqrt 2 }},\,2 + \frac{t}{{\sqrt 2 }}} \right)$$     be any point on a line then the range of values of $$t$$ for which the point $$P$$ lies between the parallel lines $$x+2y=1$$   and $$2x+4y=15$$    is :

A. $$ - \frac{{4\sqrt 2 }}{5} < t < \frac{{5\sqrt 2 }}{6}$$  
B. $$0 < t < \frac{{5\sqrt 2 }}{6}$$
C. $$ - \frac{{4\sqrt 2 }}{5} < t < 0$$
D. none of these
Answer :   $$ - \frac{{4\sqrt 2 }}{5} < t < \frac{{5\sqrt 2 }}{6}$$
Solution :
Straight Lines mcq solution image
$$\eqalign{ & {\text{Let }}P{\text{ be on }}x + 2y = 1 \cr & \Rightarrow 1 + \frac{t}{{\sqrt 2 }} + 2\left( {2 + \frac{t}{{\sqrt 2 }}} \right) = 1{\text{ or }}t = - \frac{{4\sqrt 2 }}{3} \cr & {\text{Let }}P{\text{ be on 2}}x + 4y = 15 \cr & \Rightarrow 2\left( {1 + \frac{t}{{\sqrt 2 }}} \right) + 4\left( {2 + \frac{t}{{\sqrt 2 }}} \right) = 15{\text{ or }}t = \frac{{5\sqrt 2 }}{6} \cr} $$

Releted MCQ Question on
Geometry >> Straight Lines

Releted Question 1

The points $$\left( { - a, - b} \right),\left( {0,\,0} \right),\left( {a,\,b} \right)$$     and $$\left( {{a^2},\,ab} \right)$$  are :

A. Collinear
B. Vertices of a parallelogram
C. Vertices of a rectangle
D. None of these
Releted Question 2

The point (4, 1) undergoes the following three transformations successively.
(i) Reflection about the line $$y =x.$$
(ii) Translation through a distance 2 units along the positive direction of $$x$$-axis.
(iii) Rotation through an angle $$\frac{p}{4}$$ about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates.

A. $$\left( {\frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
B. $$\left( { - \sqrt 2 ,\,7\sqrt 2 } \right)$$
C. $$\left( { - \frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
D. $$\left( {\sqrt 2 ,\,7\sqrt 2 } \right)$$
Releted Question 3

The straight lines $$x + y= 0, \,3x + y-4=0,\,x+ 3y-4=0$$         form a triangle which is-

A. isosceles
B. equilateral
C. right angled
D. none of these
Releted Question 4

If $$P = \left( {1,\,0} \right),\,Q = \left( { - 1,\,0} \right)$$     and $$R = \left( {2,\,0} \right)$$  are three given points, then locus of the point $$S$$ satisfying the relation $$S{Q^2} + S{R^2} = 2S{P^2},$$    is-

A. a straight line parallel to $$x$$-axis
B. a circle passing through the origin
C. a circle with the centre at the origin
D. a straight line parallel to $$y$$-axis

Practice More Releted MCQ Question on
Straight Lines


Practice More MCQ Question on Maths Section