Question

If $$\frac{1}{{2 \times 4}} + \frac{1}{{4 \times 6}} + \frac{1}{{6 \times 8}} + .....\,n{\text{ terms}} = \frac{{kn}}{{n + 1}},$$          then $$k$$ is equal to

A. $$\frac{1}{4}$$  
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{8}$$
Answer :   $$\frac{1}{4}$$
Solution :
$$\eqalign{ & \frac{{kn}}{{n + 1}} = \left[ {\frac{1}{{2 \times 4}} + \frac{1}{{4 \times 6}} + \frac{1}{{6 \times 8}} + .....\,n{\text{ terms}}} \right] \cr & = \frac{1}{2}\left[ {\frac{{4 - 2}}{{2 \times 4}} + \frac{{6 - 4}}{{4 \times 6}} + \frac{{8 - 6}}{{6 \times 8}} + ..... + \frac{{2n + 2 - 2n}}{{2n\left( {2n + 2} \right)}}} \right] \cr & = \frac{1}{2}\left[ {\frac{1}{2} - \frac{1}{4} + \frac{1}{4} - \frac{1}{6} + \frac{1}{6} - \frac{1}{8} + ..... + \frac{1}{{2n}} - \frac{1}{{2n + 2}}} \right] \cr & = \frac{1}{2}\left[ {\frac{1}{2} - \frac{1}{{2\left( {n + 1} \right)}}} \right] \cr & = \frac{n}{{4\left( {n + 1} \right)}} \cr & \Rightarrow k = \frac{1}{4} \cr} $$

Releted MCQ Question on
Algebra >> Mathematical Induction

Releted Question 1

If $${a_n} = \sqrt {7 + \sqrt {7 + \sqrt {7 + ......} } } $$       having $$n$$ radical signs then by methods of mathematical induction which is true

A. $${a_n} > 7\,\,\forall \,\,n \geqslant 1$$
B. $${a_n} < 7\,\,\forall \,\,n \geqslant 1$$
C. $${a_n} < 4\,\,\forall \,\,n \geqslant 1$$
D. $${a_n} < 3\,\,\forall \,\,n \geqslant 1$$
Releted Question 2

Let $$S\left( k \right) = 1 + 3 + 5 + ...... + \left( {2k - 1} \right) = 3 + {k^2}.$$          Then which of the following is true

A. Principle of mathematical induction can be used to prove the formula
B. $$S\left( k \right) \Rightarrow S\left( {k + 1} \right)$$
C. $$S\left( k \right) ⇏ S\left( {k + 1} \right)$$
D. $$S(1)$$  is correct
Releted Question 3

If \[A = \left[ {\begin{array}{*{20}{c}} 1&0\\ 1&1 \end{array}} \right]{\rm{and }}\,\,I = \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right],\]      then which one of the following holds for all $$n \geqslant 1,$$  by the principle of mathematical induction

A. $${A^n} = nA - \left( {n - 1} \right)I$$
B. $${A^n} = {2^{n - 1}}A - \left( {n - 1} \right)I$$
C. $${A^n} = nA + \left( {n - 1} \right)I$$
D. $${A^n} = {2^{n - 1}}A + \left( {n - 1} \right)I$$
Releted Question 4

The inequality $$n! > 2^{n - 1}$$   is true for

A. $$n > 2$$
B. $$n \in N$$
C. $$n > 3$$
D. None of these

Practice More Releted MCQ Question on
Mathematical Induction


Practice More MCQ Question on Maths Section