Question
A sonometer wire of length $$1.5\,m$$ is made of steel. The tension in it produces an elastic strain of 1%. What is the fundamental frequency of steel if density and elasticity of steel are $$7.7 \times {10^3}kg/{m^3}$$ and $$2.2 \times {10^{11}}N/{m^2}$$ respectively?
A.
$$188.5\,Hz$$
B.
$$178.2\,Hz$$
C.
$$200.5\,Hz$$
D.
$$770\,Hz$$
Answer :
$$178.2\,Hz$$
Solution :
Fundamental frequency,
$$\eqalign{
& f = \frac{v}{{2\,\ell }} \cr
& = \frac{1}{{2\,\ell }}\sqrt {\frac{T}{\mu }} \cr
& = \frac{1}{{2\,\ell }}\sqrt {\frac{T}{{A\,\rho }}} \left[ {\because \,\,v = \sqrt {\frac{T}{\mu }} \,{\text{and }}\mu = \frac{m}{\ell }} \right] \cr
& {\text{Also, }}Y = \frac{{T\,\ell }}{{A\,\Delta \ell }} \cr
& \Rightarrow \,\,\frac{T}{A} = \frac{{Y\,\Delta \ell }}{\ell } \cr
& \Rightarrow \,\,f = \frac{1}{{2\,\ell }}\sqrt {\frac{{\gamma \,\Delta \ell }}{{\ell \rho }}} \,\,\,.....\left( {\text{i}} \right) \cr} $$
Putting the value of $$\ell ,\frac{{\Delta \ell }}{\ell },\rho $$ and $$\gamma $$ in eqn. (i) we get,
$$\eqalign{
& f = \sqrt {\frac{2}{7}} \times \frac{{{{10}^3}}}{3} \cr
& {\text{or, }}f \approx 178.2\,Hz \cr} $$